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FORWARD 

Contract Nonr-l675(00) was  awarded to Bell Aircraft Corporation 

by the Office of Naval Research under sponsorship of the Arn^r Transportation 

Corps,    This is  one of a series of five study contracts let to investigate 

the application of various  schemes   to the design of Vertical Take-off and 

Landing  (VTOL)  or Short Take-off  (STO) Assault Transport Aircraft, 

The particular field of investigation at Bell Aircraft is  the 

application of ducted propeller propulsion systems to the design of aircraft- 

capable of performing the Assault Transport mission.     The results  of the 

investigation are presented in the following listed reports: 

TITLE REPORT NUMBER 

Summary Report Dl8l-9l;5-001 

Design Report Dl8l-9it5-002 

Survey of  the State of the Art                                            Dl8l-9i|5-003 

Performance Dl81-9lj5-O0li 

Stability and Control Dl8l-9i^-005 

Duet and Propeller Analysis Dl8l-9i£-006 

Preliminary Structural Analysis                                          Dl8l-9Uf>-007 

ma ^k^ __"    ** m*m*t- 
fll/F^^^öF~~~ — -, 
Ciäi0fef|ia-'al Search (coda ^4 
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ABSTRACT 

A brief preliminary analysis is presented in this report of the 

hovering and transition stability,, and an insight to the reaction control 

picture, associated mth one of the more promising design configurations of 

a ducted fan vertical take-off and landing assault transport airplane. 

These analyses are introductory in nature and tend to define feasibility 

and areas for further study,, 

Concentration of effort has been placed primarily on hovering 

flight where the aerodynamic forces are assumed negligible and only engine 

gyroscopic,, duct fan characteristicsj mass and inertia terms are important. 

The hovering condition was investigated with various control levels for 

control stabilizing the airplane while individual gusts as high as 50 feet 

per second were applied in roll,, pitch and yaw, A "pilot acceptable" gradient 

was determined after many hours of simulated flight time on the Reeves 

Electronic Analogue Computer,, REAC traces are shown of pilot input and 

resulting airplane output displacements as a function of time for the various 

c ondlti ons s tudi ed„ 

Transition phase where the aerodynamic forces tend to build up with 

increasing velocity proves to be of less importance in comparison to hovering. 

Here conventional aerodynamic control surfaces tend to become effective with 

increasing velocity and tend to augment the reaction controls at the low 

flight speeds. 

Power off static longitudinals lateral and directional stability 

has been investigated and horizontal and vertical tail sizes designed to give 

a desirable stability in pitch,, roll and yaw. 

Report No, D181.-9U5-005 Page lx 
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SmmARY AND CONCLISIONS 

A preliminary analysis of the dynamics of hovering and transi- 

tion flight has been investigated for a ducted fan configuration of a 

VTOL Assault Transport Aircraft. Emphasis is placed on the control 

hovering studies since these investigations represent the reaction 

control design criteria.  Associated stability and control studies were 

also investigated for the transition phase of service flight. Analogue 

simulation of the aircraft dynamics along with a technique incorporating 

conventional airplane controls enabled Bell Aircraft Corporation test pilots 

to give "pilot opinion" concerning satisfactory and unsatisfactory flying 

characteristics of various reaction control input levels. Records and traces 

of pilot and aircraft response are presented and briefly analyzed for pur- 

poses of feasibility and control design requirements. 

From the hovering studies it was learned that the pilot was 

able to control stabilize the airplane under still air and severe gust 

conditions up to 5>0 feet per second in roll,, pitch and yax^r.  The follow- 

ing control requirements were establisheds 

(1.) Roll reaction control 7»5 degrees/sec^* 

(2) Pitch reaction control 10 degrees/sec 

(3) Yaw reaction control ,5 degrees/sec^ 

Plots of the equivalent forces and moments required for these gradients 

are shown, in the figures of this report. Inclusion of power on duct 

aerodynamic terms in the hovering dynamics indicated reduced airplane 

ground drift tendencies. 

Preliml.na.ry analyses of duct exit flap controls have been 

examined for roll and yaw control with flap chords of one to three feet 

Report Ho, Dl8l-9h5-005 
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in length. For pitch control the do-wnward force exerted by a J~85> engine 

located at the vicinity of the vertical-horizontal tail junction gives 

sufficient control for pitch attitude« The J-85 reaction engine is capa- 

ble of producing 2it00 pounds of force for pitch control. 

Transition cases were examined for representative speeds on 

take-off and landing. Aerodynamic control became more apparent to the 

pilot with the higher forward velocities. Traces are presented showing 

the pilots ability to avoid divergent motion for the various conditions 

investigated 0 

The horizontal and vertical tails were respectively designed to 

give an average static margin of 12%  and a yaw stability level of approxi- 

mately «OOlS/degree, The wing geometric dihedral is zero,, with positive 

roll stability exhibited throughout. 

The following conclusions may be drawn fPcp these studiess 

1, Acceptable control gradients can be designed for the AT 

Airplane. 

2. Bell Aircraft Corporation pilots can control the airplane 

manually in hovering flight with the acceptable control 

gradients established, 

3o Pitch reaction control can be obtained from a J~-85 engine 

situated at- the tail end of the fuselage, 

ii, A split flap type control arrangement at the duct exit is 

satisfactory for roll control, 

5» Yaw controls for hovering flight can be designed as a ducted 

flap arrangement or a reaction engine at the tail. 

Report No. Dl8l-9U5~005 Paw 2 
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6« Static longitudinal stability is ample and of proper order 

for service level-flight conditions, 

7» Lateral - directional stability is ample throughout the 

level flight regime, 

8. Inherent engine gyroscopic moments tending to couple the 

pitch and roil planes of the airplane prove to be of little 

consequence to the pilot for the hovering and transition 

cases s tudi ed„ 

9, Fan slipstream effects on the horizontal tail are negligible, 

3 0, Large moments of inertia of the AT Airplane result in a 

relatively easily control stabilized airplane. 

The following recommendations are siiggested for future stability 

and control studiesg 

1, Detailed studies along -with a wind tunnel program of the 

duet - exit flap controls should be made for proper design 

refinement, 

2= Control, lag studies should be made for the dynamic hovering 

and transition studies on the REAC, 

3. Level flight dynamic stability should be investigated 

throughout the conventional flight regime. 

1;. A flight simulator program should be initiated to include 

a complete flight from hovering to transition with a pilot 

flying a given flight path» 

5, A complete wind tunnel program should be initiated to cover 

power on and power off aerodynamic characteristics of the 

airplane. 

Report No, Dl8l-S^5-OC^ Page 3 
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6, A detailed investigation of maneuverability of the VTOL AT 

Airplane should be conducted» 

?, A comprehensive study of power on and power off duct aero- 

dynamics should be made with wind tunnel substantiation. 

80 Feasibility study of controlling duct aerodynamics by inlet 

boundary layer control and possible resulting applications 

to aircraft control;, 

Report No, Dl8l~9h5~005 pafTO ^ 
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PART I 

INTRODUCTION 

' 

For the past five years Bell Aircraft Corporation has been 

studying the feasibility of horizontal attitude - vertical take-off and 

landing airplane configurations« A test vehicle has been built and flown 

successfully utilizing rotation of jet engines for hovering and transition. 

Another test vehicle is now being built incorporating jet tail exit rota- 

tion., This report presents preliminary paper studies on a ducted fan 

vertical take-off assault transport airplane again with the initial take- 

off in the horizontal attitude. Studies covering the more pertinent sta- 

bility and reaction control problems associated with ducted fan VTOL aircraft 

are considered for the most promising AT design studies to date» 

The results presented herein are felt to be indicative of the 

airplanec, although better quantitative data should be obtained from wind 

tunnel and/or flight testing. Since under the contract a brief study 

was desired^, detailed comprehensive studies and analyses are not presented«, 

but rather the associated problem of feasibility. 

This airplane has a gross weight of 6? ,,660 pounds and an empty 

weight of li23390  pounds. The ducted propellers,, powered ty Allison engines^ 

are situated at the extreme wing tips with the smaller diameter ducts 

situated slightly inboard«, The ducts are located so that the horizontal 

tail is unaffected by the slipstream of the ducted propellers. 

The wing Incorporates zero sweep of the quarter chord with an 

effective aspect ratio of 508 and a taper ratio of three quarters. The 

horizontal and vertical tail are respectively 310 and 232 square feet with 

Report No, Dl8l-9[£"0O£ Page $ 
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aspect ratios of h^3S  and 1,82,  Both stirfaces have 65A - 008 airfoil 

sections with leading edge sweep of the vertical tail equal to 2$  degrees 

and four degrees for the horizontal tail. 

Jet reaction control has been considered for pitch (also yaw) 

from a J-85 engxne located at the tail end of the fuselage and flap con- 

trol situated at the duct exit for roll and yaw control during hovering. 

Other types of roll and pitch control have been considered but not 

developed due to the dearth of ducted fan aerodynamics» For example it 

is possible that the duct forces and moments might be developed at will 

by injecting compressed air at the duct inlets giving a primary or 

supplementary method of control. A thorough wind tunnel program is nec- 

essary to give the designer an understanding of the potentials of ducted 

fan propulsion« 

' 

Report- No. Dl8l~9li5-005 
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PART   II 

HOVERING AND TRANSITION STABILITY MID CONTROL 

In I952 the Bell Aircraft Corporation instituted a general pro- 

gram devoted to VTOL stability and control problems„  Generalized stability 

equations were developed to describe an aircraft in hovering and transition 

flight. The development of the equations of motion are given in these works 

(References U<, 5? and 6) and are not presented herein,, 

Analytical Treatment: 

In utilizing the basic equations of motion for the dynamics in 

hovering flight the following assumptions were made: 

a.  The aircraft was assumed rigid 

be Aerodynamic forces and moments were of negligible magnitudes 

c„  Only small angles existed in roll,yaw and pitch 

d. Initially the aircraft velocities and displacements are zero 

e. Reaction control produced pure couples 

f. Thrust level of ducts remained constant 

In considering that the thrust level remained constant_, it was 
;  I 

a.ssumed that pitch and roll controls did not effect the overall thrust« 

Brief studies were conducted to determine the effect, of this assumption on 

the present system and it was found that the thrust to weight ratio would 

have to be maneuvered between approximately 1 and 1.025 to maintain a pre- 

determined altitude.  In the time available it was not possible to incor- 

porate pilot control studies of thrust on the analogue simulator. 

Report No, Dl8l-9U5'-005 Page 7 
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Two axes systems were used for the equations. Moment equations 

utilized body axes with origin at the center of gravity, the X axis para- 

lel to the fuselage center line, and the Y axis parallel to the wings. 

The force equation coordinate system also had its origin at the center of 

gravity but the XT plane remained parallel to the ground plane while the 

X axis was oriented to the azimuth heading of the aircraft.  This gave the 

advantage of having forward and lateral velocities parallel to the ground 

planeo 

The resulting equations for hovering ares 

Forces s 

t 
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T 
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where ä 

a. All angles are in radian 

b. I . I„s Iz and Ixz represent the moments of inertia, and 

product of inertia respectively. 

c'  J-i s .j.?5 Jo represent the components of the total angular 

momentum vector along the X, T and Z axes. 

d,, T is the thrust in pounds 

e. L(t)o M(t)5 and N(t) represent the reaction control moments 

pound feet. 

Gyroscopic Effects % 

In previous low density configuration studios of airplane hovering 

and transition, engine gyroscopic effects have been considered of first 

order importance.  For the -00? and -009 assault transport designs the large 

airplane moments of inertia decreased the importance of the engine effects. 

In the computer hovering studies the pilot was almost unaware that gyroscopic 

coupling existed in pitch and roll.  Figure 1 is included to indicate the 

gyroscopic angular accelerations developed in roll and pitch due to 6     and 0 .. 

with engines developing maximum power and duct rotation equal to 90 degrees. 

REAC Studiesg 

The "hovering flight" conditions have been investigated for the 

D-181 designs 00?3 009 and also a 009 modified design (which is that as 

shown in the three view drawing). The assault transport VT0L ducted fan 

designs were investigated for landing and take-off service conditions.  The 

primary purpose of this preliminary design study was to establish control 

Report No. Dl8l-9l^-005 
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1 

force g-^adients required for the reaction control system in roll., pitch and 

yaw and thus determine the reaction control design feasibility for satisfac- 

tory hovering and transition flight. 

Evaluation of the hovering stability characteristics and control 

requirements were carried out principally by analogue simulation. The com- 

puter set up was made on the basis of linear and angular inertial equations 

including the gyroscopic effects of the engine. Provisions were made to 

introduce simulated reaction control quantities from a stick-pedal arrange- 

ment into these equations. Similarly the output of the computer was pre- 

sented to the pilots on two oscilloscopes, thereby giving him aircraft 

attitude and velocity information. During the tests random gusts were inter- 

jected by the computer operator and the resultant pilot and airframe response 

recorded,     i *^-*t 

The stick-pedal mockup provided with three potentiometers to 

measure electrically the angular displacements of the controls. Since the 

reaction controls were assumed to vary linearly with control displacement 

the electrical angular displacement signals were merely amplified to the 

desired level and fed into the computer problem as angular acceleration, i.e., 

L(t)   + ._  > e"Oc, 

In testing the system the computer was first calibrated for a 

given weight and control level.  The pilot would then "hover", first with 

no gusts,followed by simulated flights corresponding to variant gust condi- 

tions.  Since the gusts were considered to give pure couples the only dis- 

turbance indication available to the pilot was a change and rate of change 

of attitude.  This partially accounts for the pilot's use of the 

Report No, D181-9U5-005 
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"attxbude" oscilloscope as a primary information source. Several control 

levels were used with each of two test weights. 

During the tests the airframe was disturbed by random pulse 

shaped gusts of one second time duration.  It is felt that pulse shaped 

gusts are representative of the most drastic type that could be encountered. 

The resulting variation of us vs0 ., 0 <, s^ s 
6   and <£ as well as pilot re- 

sponse and gust conditions were continuously recorded during each run. 

After each gust the pilot corrected his attitude and then zeroed his vel- 

ocity . 

The computer program was set. up such that aircraft weight, control 

levelo and gust magnitudes were varied.  Upon completion of this program 

(see Table of Computer Studies) a satisfactory "pilot acceptable" reaction 

control level was arrived at from which the necessary forces and moments 

wer 8 de te mine d. 

In both weight tests the gyroscopic coupling that existed between 

roll and pitch was small and therefore only barely noticeable to the pilot. 

As a consequence the large moments of inertia result in a relatively easy 

"control stabilized" aircraft. 

Rolling and pitching motions were periodic and had a common period' 

of llU seconds for the maximum weight condition and 113 seconds for the light 

weight condition. 

Figures 2 and 3 show the effect of control gradients on the hover- 

tog lateral and longitudinal dynamics with a roll gust of ^0 ft/sec and con- 

trol gradients numbered 1, 2 and 3.  (See Table II-l). The gross weight 

condition of 67 .,660 pounds is shown, in Figure 2| v/J 3 $ s ^d 6   are the 

pilot control inputs utilized for correcting the gust disturbance. The 

Report So, Dl8l-9U5-00$ Pao-^ -,1 
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"pilot acceptable" gradient is that indicated as No, 2„ Although gradient 

No» x indicates better control stability the Bell Aircraft Corporation 

test pilots indicated that gradient Nc 2 was acceptable^ thus lowering 

the control requirements»  Figure 3 shows the effect of the lighter air- 

plane weight of [j2s390 poundso  Figure h,  gives an indication of weight or 

inertia effects on the airplane»  Figure £ indicates the severity of the 

different gusts in pitchs yaw and roll on the lateral and longitudinal 

dynamicso  The traces indicate that the roll gust seems to be the more 

difficult to control for the pilot than the yaw gust as shown in the lateral 

dynamics.  Figure 6 shows the same traces for the lighter weight condition. 

Figures ? (a) and (b) show the dynamics resoectively for the heavy and 

light weights with the pilot acceptable gradients controlling airplane at- 
I 

titude with gust magnitudes of 30 feet per second in roll pitch and yaw. 

Hovering Stability with Power On Duct Aerodynamics: 

During the latter part of the studies the aerodynamic effects of 

the ducts, inboard and outboard with full power on (see Figure 8) were inclu- 

ded in some of the hovering dynamic studieso  It was found that., although 

the "fixed stick" characteristics went from a neutrally stable category to 

an unstable category,, the aircraft appeared more easily controlled by the 

piloto  Drift velocities over the "ground" were reduced»  This increase in 

"control stability" is of course acconroanied by greater- pitch control re- 

quirement for maneuvering0 For these tests ten degrees per second squared 

was used for pitch control representing approximately two thirds of the 

total angular acceleration available using the J-85 engine at the tail. 
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In computing the duct moments and normal forces^ a dimensional 

analysis was made to determine possible empirical expressions for these 

quantitieso  Upon determining those expressions that most closely fit the 

data of Reference 2U, the approximations of the moments and normal forces 

were made. Specifically those moments and forces corresponding to angles 

of attack of 80,, 85 and 90 degrees with a free stream velocity of 0 to 

30 feet were calculated. Wind tunnel tests are presently being conducted 

at the University of Wichita which should result in better approximations 

of these quantities» 

Reaction Control; 

From the foregoing tests (with and without duct aerodynamics) 

it appeared that a control level of 7.5 deg/sec^ in roll,, 10 deg/sec^ in 

pitch and 5 deg/sec^ in yaw was sufficient for control»  In order to pro- 

vide these control gradients it would be necessary to provide maximum 

forces of 3650 pounds at the center line of one outboard- duct for roll^ 

15U0 pounds at the J85 tall exhaust for pitch, and 2250 pounds at the 

center line of one outboard duct for yaw. To attain these forces a sys- 

tem of split flaps and plain flaps at the exit of the outboard ducts for 

roll and yawB respectively was examined. The split flaps used for roll 

and« the plain flap for yaw control» 

The design incorporates a J-85 engine for pitch reaction control 

which is capable of producing a force of approximately 21+50 pounds. Figure 

10 presents design reaction control moments required for various control 

gradients.  Figure 11 shows the forces required for pitch control with the 

various gradients. Estimates of the yaw and roll flap reaction controls 
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required for various input gradients are shown respectively in Figures 12 

and 13. Assuming yaw control at the tail5 Figure 12 (b) shows the amount 

of force required for acceptable control,,  The moment arm is the distance 

from the eg to the force action point„  Figure lit shows the yaw control 

forces and moments, developed by outboard duct exit flaps of 1, 2S  and 3 

foot chords„ Engine power is maximum and corresponding duct exit velocity 

equal to 390 ft/sec.  The forces and moments are calculated for control 

deflections up to 2S> degrees=  Figure 1^ indicates the roll reaction con- 

trol forces developed by split flaps situated at the duct exit for duct 

exit velocities of 305 and 390 feet per second and control flap chords of 

1 = 3 feet with split flap deflection angles up to \\0  degrees. 

Transition; 

The need for a transition stability and control analysis, although 

not as critical as a dynamic analysis for hovering, is necessary for devel- 

oping the aircraft pilot response at low speeds to gust conditions.  During 

a typical transition, aerodynamic moments and forces rapidly come into play 

representing a period during which engine gyroscopic moments become compar- 

atively insignificant to those of an aerodynamic nature. Hence, although damp- 

ing and pilot control is continually improving, the oscillatory modes must be 

checked« 

In studying transition, four transition cases were investigated and 

the pilot's ability to fly these service conditions were checked by the clas- 

sical perturbation technique.   Before putting these problems on a computer 

for analogue simulation it was necessary first to make certain sinrolifying 

assumptions dictated to a great extent by time availability. With the ex- 

ception of excluding duct power moments none of these simplifications 
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seem critical when considering the overall objectives„ Sufficient data was 

not available at the time to determine power on ducted fan effects o 

Analogue simalation of the equations of motion was set up on a 

Reeves Computer and pilot control introduced therein« As in hovering the 

pilot was given attitude information on the oscilloscopes with a conven- 

tional stick and pedal arrangement for corrective measures. Aircraft motion 

variables as well as pilot control response was recorded for various gust 

conditions.. 

Following is a list of the simplifying assumptions mades 

1„ The aircraft is a completely rigid structure, 

2,  The reaction control axes coincided with the aerodynamic con- 

trol axis. Since the angles of attack encountered were small., 

this was considered satisfactoryc 

3o  The ifiitial values of the basic variables 6   s   
a 5

Aa ,   ß     >   & s 

<p  and their derivatives are zero, 

U. The small angle assumption was made f or ^ ^ & s 41   and a , 

>o The aircraft was symmetrical to the XZ plane both from a weight 

and aerodynamic standpoint« 

6,  The X moment axis initially coincide with the X force axis. 

7« V is small compared with ¥0. 

8« No duct rotation with respect to the airframe takes place during 

the problem« 

9« The aircraft is initially trimmed. 

10, Duct power moments and normal forces were neglected« 
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Equat.ions of Motions 

■ 

> 

Following are the basic equations used for this analysis. Develop- 

ment of these equations can be found in Bell Aircraft Corporation Report No» 

65-978-002, 

D+K^ 

Ki 

Where 

K, 

D+Kr 

K- 

-D+K. 

K9 D^K10D 

0 K23D 

0 K2liD 

K^    ~ r C% 

K2    = „ 

( ̂ D 

0 

K22D 

D*K,« KQ'D^'
1 

K3» D2+Kj4«D 

-K7« -.Kß«D--K9'D 

— + ——- sm  (X, +  a) 
mUo 

0 AU 

Uo 0 

0 A a 0 

K21 
AÖ (JjCt) 

1 A/3 F1(t) 

'»D~K6« A^ F2(t) 

•KIG' 
A       / F3(t) 

                  1—           _J 

K- 

Kr.f 

2CLC 

mt^ SOS   (.x- * 
Cl, 

Bl„ 

K-? - 0 

Kg « 0 

KQ     ~ — 

KlO "     • T "^   (f|f) 

qSc 
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Lxz 

Ke5 
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"n 
K7' CqSb) 

K85 

Kr 

KlO1 

K0» 

V21 
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J eos   (a * A') 
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K 23 
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X      = angle measured from mng root chord to engine  angular 

momentum vector 

X      - angle measured from wing root chord to  thrust line 

-> 

l^0S 

^T   5  Cj3       = initial value of 0^ and C^ 

(mU„c 
G3 (t) =j^7Cm, 

S  + Piteh Reaction Control Moment 

F (t) = (7 Cy ) ä S' "r 

F (+ ) - I mUob n  I 5  + Roll Reaction Control Moment 
2    -[lxr  lg  ^a    ■-  ~ ^     --    

mU0b 
F3(*'- r?-S.K* i 

mU0b 

i/Z 
ä>„ + 

Yaw Reaction Control Moment 

The above equations were simulated on an analogue computer (see 

computer transition schematic) with the' control parameters being generated 

by the pilot using a control system mockup.  The pilot's primary presenta- 

tion consisted of a bar on an, oscilloscope that moved up and down for pitchy 

loft and right for sideslip and tilted for roll, A secondary presentation 

gave the pilot yaw information.  One second gusts corresponding to 50 feet 

per second air velocity were introduced by giving suitable angular accel- 

erations in yaT:5 pitch or roll. 
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i 

The following points of possible transition were taken as test 

Weighty lbs 

67,660 

67,660 

67,660 

67,660 

In making the above analysis the reaction control level was taken 

asj 10 degrees per second^ in pitch, 7.5 degrees per second^ in roll and 5 

degrees per second squared in yaw„  To these reaction control angular accel- 

erations was added the aerodynamic control angular accelerations correspond- 

points % 

Case un    ft 
0 sec a,cieg X,deg T,lbs 

I 118.7 8 80 5l,Ul3 

II 22o93 u 80 67,660 

III 122.9 8 uo 67,660 

IV 170.8 ii UO 67,660 

ing to the initial U0 involved. Since AÜ remained small, this was quite 

accurate.  In all cases the stability was improved over that in hovering, 

and with the exception of Case II, the control improvement was readily recog 

nized by the pilot. As in hovering the gyroscopic effects could hardly be 

noted.  The results of three runs of Case IV are shown in Figures 16 to 21 

inclusive illustrating the ease of control stabilizing at this speed. 
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Aerodyn ~Tnic Control Derivatives Used on REAP Transition Studies 

Rudder s 

^ 
ss ,00378/d8g (a  =   U  &  8°) 

s = -.001^/deg (a =  U &  8°) 

Elevator; 

(Gm„ ) *     .00695/deg      (a = U.O) 

(CmB ) - .00576/deg     (a = 8.0) 

(CT  )  -  -„00268/deg     (a = U.O) 
e 

(CLs ) - -.00218/deg     (a = 8.0) 
e 

Aileron 

Cc,    )   ' 
■ a 

=     ,00129/de g 

Adverse Yaw Due   to Ailerons 

, C^a       " 
o00U3/deg 

On.         » .007/deg 

(one aileron - a = U & 8°) 

(a = h) 

(a = 8,0) 
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PART III 

STATIC LONGITUDINAL STABILITY 

A brief study of the longitudinal stability of the ducted fan 

assault transport has been made to determine the horizontal tail size 

required for an adequate airplane static margin. The horizontal tail was 

designed for an approximate static margin of -.12 for the low speed and 

lift coefficient range. The aercdynamic data necessary for the computa- 

tions of the pitching moments are presented within the body of this report 

such as the wing and horizontal tail lift curve slopes j, downwash, and the 

destabilizing effect of the fuselage and ducts.  The most aft eg has been 

used throughout for the computations. This eg corresponds to 17.6^ of the 

wing mean aerodynamic chord and represents the fully loaded weight condi- 

tion.  The deviation in eg position between the heavy and light weights is 

exactly 1,0 inch.  The assumption ha^: also been made that the center' of 

pressure of all surfaces is at the quarter chord of the mac. 
■ 

Horizontal Tail Geometry Characteristics; 
I 

The iiorizontal tail geometric characteristics are shown in 

Figure 22.  Horizontal tail area is 310 square feet and is 2S%  of the refer- 

ence wing area.  The leading edge sweep is 13-75 degrees and the taper ratio 

equal to ,$2, The aspect ratio of the horizontal tail based on the leading 

and trailing edges of the horizontal tail extended to the center line of the 

fuselage is iu35. The lift curve slope of the horizontal, tail is based on 

this aspect ratios with reductions in lift curve slope due to cutouts and 

interference based on AAF TR 5l67j from Reference 25. The lift curve slope 

for the horizontal tail is given in Figure 23 along with the wing and 

vertical tail lift curve slopes. 
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The fuselage and wing characteristics can be seen from the three- 

view drawing« 

The static longitudinal stability was determined by summing up 

the various contributions of the airplane components. Perusal of the slip- 

stream effects due to the inboard ducts indicate a negligible/or beneficial 

effect for steady symmetric flight conditions.  The following contributions 

to the longitudinal stability have been considered for the airplanes 

A      aF        a D.        a Da       
a HT 

in        0 
(C m 

W 

and the static margin iss 

dC n 

dÖT -   0T. ) 
a A        a 

Fuselage and Duct Contributions 

The fuselage, inboard and outboard ducts (see Figure 2U) were 

the only destabilizing components and were estimated by an empirical 

expression given in Reference 22 as followss 

(Cm )  -  .01658  (K") 
a v 

W 

Wi 

(C v m. 
D 

.01658 (K"?) 

S
T h 
(Sc) 

L. ref 

• 
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The wing contribution has been estimated by the  following 

expressions 

(C 
x 

m. CCr    ) 
w w 

Where § x = distance from eg to ep 

c ■ wing mac 

The contribution of wing,   fuselage  and ducts is  shown in Figure 25« 

. , 

Horiaont al_Taij 

The horizontal tail is  computed by the following  expression; 

(CM ) 
HT 

CC^)^    (1  -    ^   )    ^      ^ 

i r 

where  the  downwash has been estimated according to  Reference 18»     The 

ds 
variation of (l - "T")  TS  (a)  is  shown in Figure  26 for M » 0 and  the 

horizontal tail eontribution is  shown in Figure 2?.     The variation of 

dynamic  pressure at the  horizontal tail has been taken as  0.9.     Thrust 

momsnts  have been neglected and been assumed to   effect only a trim change 

on the  airplane. 

Figures  28  and 29  shows the  stability respectively of the  AT 
dG 

airplane  in terms   of  Cm      as  a function of  M and GT   and  static margins m9 

as .a function of M and CTO 
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The reference aspect ratio for determining the lift curve slope 

of the wing has been taken from the center line of the airplane to the 

center line of the outboard duct which corresponds to a (Cr ) of equivalent 
. a. 

aspect ratio of the exposed wing panels with body effects considered. The 

vertical tail has an effective aspect ratio greater than the geometric 

aspect ratio due to the low position of the horizontal tail and longitudinal 

location of the horizontal tail with respect to the vertical tail root chord. 

The Tertifeal tail span is defined from the vertical tail tip to the 

horizontal tail plane«  The horizontal tail lift curve slope was taken as 

shown in Reference 215s which indicates a reduction in lift curve slope due 

to the presence of tail cutoutsj gapsj, etc. 

The Mach corrections were taken from the simple axpression in 

Reference 26» and are functions Ä- ß -A. .Hc .A.9   and aspect  ratio  i.e. 

*;:' •■■ 

V    O/M   = 

A  +   2  eos J^ 
ITcoiX"    ^CL  ) 

M =  0 
M 
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PART IV 

LATERAL DIRECTIONAL STABILITY 

Directional Stability; 

The static lateral directional stability characteristics of the 

VTOL ducted design were examined for the more pertinent Mach numbers and 

lift coefficients anticipated in conventional level flight.  The following 

sections give a breakdown of the preliminary directional and lateral sta- 

bility of the VTOL airplane. Throughout the service flight conditions 

positive stability is demonstrated throughout. 

Vertical Tail Geometrys 

The vertical tail has an aspect ratio of 1,82 where the span is 

defined as the distance from the tip extremity to the horizontal tail junc- 

tion« Ratio of vertical tail area to wing reference area is 0.187^ and 

sweep of the vertical tail leading edge is 25 degrees with a taper ratio of 

Oo297o Vertical tail airfoil section is a 65A series eight percent thick 

airfoil - identical to the horizontal tail, A sketch of the vertical tail 

geometry is shown in Figure 30.  Figure IV-31 shows the lift curve slope 

of the vertical tail based on the wing reference area of 12U0 square feet. 

I ( 

Fuselage Contributions 

Fuselage duct moments were estimated according to an empirical 

expression as given in Reference 22. The expression is identical to that 

used for the fuselage pitch instability^ but different areas are used - i.e.^ 

the parameters are now in the yaw plane - the bodies still destabilizing. 

Calculations have been determined for M ~ 0, and it is assumed that the 
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Mach number has null effect. Due to the wings high position, the inter- 

ference effect of the wing body combination contributes a stabilizing 

effect and amounts to Cn  = .0002/deg, 

Wing Contributions 

The wing contribution to Cn  of the airplane was estimated 

according to References 9 and 26«  The latter reference indicating the 

effect of Mach number,,  It was found that the wing contribution was very 

small for the low lift coefficients „ The expression used is as follows; 

\ C(VM.o ^ G^ Vc ZÄ 
-/L=0 

tan-^-       •       A     Af_ 
A(A+U cos^-) V       2  ß  coajv 

. X  .  J*»w\ 
+ 6 — sm — ) 

c    A / 

the subsonic compressibility effects were estimated as shown below; 

—"—^   l 
/A   +_ U   COS-A-\   /A2   +   U  AB   GOS.A_-   8   cos2^_ 

\AB  + U cos-JV   \A2   + U A cos^X. - 8 --    ' cos A. )&) L  M=0 

yertioal Tail Contributiong 

The positive contribution of the vertical tail to the directional 

stability has been determined as follows; 

CCn )    - (CL )  (~-) (V  Cb-~) ß   vT       a VT ^Srer  V   VDref/ 
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The lift curve slope of the vertical tail was determined from Reference 9 

and corrected for subsonic compressibility effects.  The above reference 

also includes the end plate corrections due to the horizontal tail. The 

tail efficiency factor ^  = (1 ~ "T^T) \~~\        is 0»9 throughout the 

analysis. 

Airplane % 

The  total airplane  stability is  a summation of  all  the  components 

and thus  equal to: 

^ A     P    Y ^ D0     P  V>± 
P VT      p int      p W 

I . 
The vertical tail has been designed to give a positive directional stability 

level of approximately (Gn/,)  = .OOl^/deg,  In all cases the airplane shows 
P k 

positive directional stability.  Figure 32 shows a plot of the contribution 

of the components., and Figure 33 the airplane directional stability. 

Lateral Stability (Dihedral Effect); 

The airplane exhibits small positive dihedral effect throughout 

the complete Mach number range„  The wing incorporates approximatelv zero 

geometric dihedral angle. Wing contribution in itself exhibits small posi- 

tive dihedral effect„  The high wing location of the fuselage and the verti- 

cal tail contributes the largest positive stability effect, 
■ 
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Wing Position Effect; 

Although the contribution of the fuselage alone to On   is usually 

negligible, the interference between the wing and fuselage can greatly alter 

the value of C^  „ This interference is such that the high wing location 
ß 

gives more positive, C-C]_ \ effective dihedral,. The expression for the wing 

position effect is 

(C-, )   = 1.2 s/k 
ß  WP 

-A, 
b. ref A 

Wing Isolated Effect; 

The simplified theory of Toll and Queijo (Reference 8) is used in 

obtaining the wing alone contribution to the rolling moment coefficient due 

to sideslip„ The expression includes effects of sweep angle^ aspect ratio5 

taper ratio,, eg location and the additional increment of rolling moment due 

to sideslip which is proportional to the lift coefficient« The total deri- 

vative of the isolated wing with zero dihedral can be expressed as: 

(^ 
M=0 (I A + 2 cos-/- 

A + li cosvt -)    <~) 

Figure 3U shows this contribution as a function of Mach number,, The sub- 

sonic compressibility effects were estimated from the following expression» 

^ 

M 

/A  + U cosVl   \        /JIB  + 2  cos-^- 
v.AB  + U cosvL /       \ A + 2 COS^A- )^ M=0 
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Vertical Tail Contribution; 

Preliminary estimates of the vertical tail effective dihedral 

contribution were estimated according to the equation given below: 

CV CCr ) 
VT VT 

5ref. 
1 - 

h 
ref 

Small negative values of C-i   are desired to improve the dutch 
ß 

roll damping characteristics whereas large negative values are desired 

for the spiral mode.  Thus a compromise is required between static man- 

euvering lateral requirements of positive dihedral effect and the dynamic 

lateral requirements.  Zero wing dihedral has been incorporated in the 

design to give a small positive dihedral effect. Figure 3!? shows the var- 

iation of the airplane dihedral parameter with lift coefficient for M = 0 

conditions„ 

Inboard Engine Out Trim Speed (^ = 0)% 

Roll trim out speeds were calculated for one Inboard engine out 

condition with wing trailing edge flap chord ratios of 25 and $0%  and flap spans 

of 30 and 95%  to give an indication of the typ^ of aerodynamic aileron 

control that may be required,,  Figure U8 shows the roll trim out 

speeds for the aforementioned aileron span and chord configuration. Although 

the $0%  aileron chord ratio is fictitious in the sense of practical design 

an insight as to what can be obtained is demonstrated. Reaction roll control 

moments are fixed for a * =7,5 degrees/sec2 (equivalent to lUO x ICr1  lb ft) 

with the wing trailing edge ailerons deflected ±20 degrees. 
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PART V 

DAMPING DERIVATIVES 

Damping in Roll; 

The damping in roll derivative CT   is the change in rolling 

moment coefficient due to a change in. rolling velocity. Large values of 

this parameter are desired for good dynamic stability.  The wing gives 

the ma.^or contribution with the vertical and horizontal -Lail being of a 

second order nature - and these are g3nerally unimportant unless these 

areas (and aspect ratios) run comparatively larger than conventional 

design dictates.  The total damping in roll consisted solely of the wing 

contribution, with CT  effects considered negligible.  Damping in roll 

as a function of Mach number is shown in Figure 36 and estimated accord- 

ing to the following expressions 

(C,)  = (C-L ) 
^ W      p , 

M=0      ■A- 

U cos^L 
/2< L (~) A + i, cos VL J 

where: 

a0 = section lift curve slope 

Corrected for compressibility effects s 

CV __A_j_ü_cos^ 

AB + It cos^L 

where s 

B =  '/'l - M2 cc32_A, 
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Damping in Yaw; 

The damping in yawj, Cn , was estmated from the contribution of 

the wing plus vertical tail.  The tail contribution is of the greater 

importance 

(Cn ) = (C  )  + (C  ) 
r A     T VT       W 

Figures 37^, 38 and 39 give the contributions of respectively the vertical 

tail, wing and airplane= 

Damping in Pitch; 

The airplane damping in pitch parameter is composed of contribu- 

tions from wing, tail- and fuselage.  Since the wing and fuselage damping 

are small relative to the tail damping, conservatism results to assume the 

airplane damping in pitch is equal to thetail damping in pitch.  Horizontal 

tail damping in pitch was calculated using the following expression: 

(Cm   ) 

HT 
(Cm   ) 

^ A a HT^W:re:f ?) Ci) - 
Figures  Ul through liU show respectively  the  derivatives C-i   s  C^   ^ C-y xr  np  -r 

and Cy^ required for the transition dynamic stability studies. 

Estimates of the power off aerodynamic characteristics of the 

ducts are shown, in Figures U5 through 1+7. These estimates are based pri- 

marily on the data from Reference 2I4., 
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SBgOLS 

CT     S       Lift curve  slope 

CVj    .      Drag cnrro slop® 
a. 

C™     s       Pitch due  to angle  of  attaok 
ct 

Cm„i> Damping in pitch q 

CYO S       Side force due to sideslip 

Cy_, Side force  due to rolling angular velocity 

Cy  j, Side force  due to yawing   angular velocity 

Yaw moment  due to sideslip 

Yaw moment  due  to rolling angular velocity 

Yaw moment  due to yawing angular velocity 

C]_    j,       (Dihedral parameter)  roll due to sideslip 

G-j   s (Damping in roll),,   rolling moment due to   rolling angular velocity 
P 

OTS Roll due to yawing angular velocity 

0   9 Yawing angular  acceleration 
I   ! 

(p  j   Rolling angilar acceleration 

&   $ Pitching angular acceleration 

w m3 Mass — 

Ix,    Roll moment of inertia 

I j,    Pitch moment of inertia. 
if 

I„7j) Yaw moment   of inertia 

Product of   inertia about  x & z  axis 

Roll radius   of gyration 

xn^ 

k.„0 Pitch radius  of   gyration 
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k.       law radius  of gyration 
la 

1    time conversion factor 

Dj,   4^ = —4r-v J differential operator 

^u ,   m    j, relative density factor 

us forward velocity ft/see 

Vj sideslip velocity 

W5 vertical velocity 

/Ö j sideslip angle 

6 j pitch angle 

0 j roll angle 

0 s  yaw angle 

\ j angle from wing root chord to thrust line 

bj wing span 

J^ angular momentum of engine 

T,, thrust 
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Figure 9a.   Wind Tunnel Duct Model 
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Figure 9b.   Wind Tunnel Duct Model 
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